Biomaterial Hybrids

Hybrid materials from both worlds – the biomolecular and the semiconductor one – will become an important branch in future material science. Their today applications are mainly in the area of biomolecular sensing. In a first approach MEMS devices will be developed that combine biochemical assay techniques with the miniaturizing potential of silicon manufacturing. Various sensor principles may be used for such systems like the gravimetric detection via surface acoustic waves. In a second step, the convergence of biomolecules and semiconductors in fully CMOS-integrated devices will allow for the realization of sensors and bioelectronic circuits with completely new functionalities. 

Regarding the fundamental physics of future bioelectronic devices it is evident that the interface between biomolecules and semiconductors represents the main challenge for a convergence of both material worlds. Open questions are related to the transmission of information via the interface or the local control of biomolecular bonding. From the viewpoint of structural research the perspective is of interest, how the nanotemplating of semiconductor surfaces may enable a local control of biomolecular bonding. Such a technique would open the path for biophysical and other studies of molecular interaction between active biological species like proteins and their ligands. These questions are currently in the focus of modern life sciences after the sequenzing of the human and other genomes has deciphered the control centers of eucariot cells and it has to be elucidated, how the mechanics of the cell is operative in detail. Fascinating perspectives can be realized for this research field with modern CMOS semiconductor technology at hand [51].

First investigations have begun by using the currently performed transition of IHP technology down to the 130 nm lithography node. To give an example, the figure to the right displays an AFM-measured sub-nanometer topography that may be inscribed into standard Si wafers [44] and that may serve as a nanotemplate for subsequent immobilization protocols.

[Number in square brackets] indicate the number in the publication list